

A350 Entry In Service

Case Study S1000D & Spec 2000 Ch. 15

Jani Kilpi

Data Challenge at New Aircraft EIS

- When the first aircraft of a new type is delivered, it must start flying within days
- Maintenance Information System (MIS) needs to be set up before that
- Huge amount of data required for Maintenance processes to work
- Data is coming from different sources in different formats having different revision cycles
- High percentage of the data is one-time-only involving manual processing

→ How to streamline and digitalize this?

Key Data in Aircraft Maintenance

- Consumable Parts with Supply Chain Data
- Rotable Parts with related data sets
 - Rotables Support in-house or through pooling contracts
 - Rotable Part Requirements
 - Warranty Data
- Maintenance Program with Taskcard Data
- Allowable Configuration with related data sets
 - Function Positions
 - Fleet Applicability
 - Assembly Configurations
- Actual Configuration with Serial Number Data

Airbus A350 Next Generation Data

- With A350, Airbus applies two next generation standards providing operators better data
 - \$1000D
 - New standard for delivering Technical Data
 - Data content more exhaustive than previous iSPEC2200 standard
 - Data structured in a relational way
 - Deliverables in XML format
 - SPEC2000 Chapter 15 Delivered Parts List
 - New standard for delivering Serial Number data at aircaft EIS
 - Data more punctual, robust and easily machine readable than earlier Excel based delivered parts lists
 - Deliverable in XML format

A350 Data Upload to Finnair AMOS

Iterative Way of Working

A350 S1000D data package

At EIS 3.9GB / ~108000 files
Currently 6.5GB / ~139000 files

AIRCRAFT_STRUCTURAL_REPAIR ELECTRICAL_STANDARD_PRACTICES NON DESTRUCTIVE TEST PART SCHEMATIC_DIAGRAM STRUCTURAL REPAIR IPD SYSTEM DESCRIPTION WARNING_CAUTION WIRING_DIAGRAM WIRING_LIST ZONE_ACCESS_PANEL

CIR data modules

ACT_PCT
 AIRCRAFT_BREAKDOWN
 CCT
 ENTERPRISE
 FIN_CB
 PART

ZONE_ACCESS_PANEL

CIR data extraction one-time-only with simple xslt scripts

- ACT, PCT and CCT to resolve effectivity
- AIRCRAFT BREAKDOWN -> A350 ATA list
- ZONE -> Zone list to AMOS
- ACCESS_PANEL-> Access panels with open/close times, fastener type & quantity and hinge Y/N to AMOS
- AMOS S1000D Upload automatically extracts some CIR data modules
 - ENTERPRISE -> Supplier list
 - FIN list reduced set (4500) to AMOS
 - PART -> Part list w. classification, alternates and suppliers

Business data modules

- S1000D business data consists of more than 60000 small data modules
 - Simple xslt scripts traverse Maintenance IPD and select data modules for processing based on DDN
 - CSN Part No and CSN FIN relations from Maintenance IPD data modules
- AMOS S1000D Upload automatically extracts some Business data modules
 - Externalised applicability

A350 Parts to AMOS

- Sources for A350 Part data
 - A350 S1000D CIR Part and Maintenance IPD
 - Airbus RSPL
 - Preliminary Airbus SPEC2000 Chapter 15 Delivery Data
 - Component Support Contracts
 - AMOS System
- Selected Parts collected manually in Excel
 - Appended with related data from above sources
 - Complex network of cross-checks between different data sets and against current AMOS data
- After multiple test rounds ~1800 Consumable Parts and ~2100 Rotable Parts were transferred to AMOS with all related data
- In addition to that hundreads of Parts were manually typed in AMOS during the EIS project

A350 Configuration Data to AMOS

Allowable Configuration

- First draft built in semi-automated way using data from:
 - A350 S1000D CIR FIN and Maintenance IPD
 - Preliminary Airbus SPEC2000 Chapter 15 Delivery Data
- Allowable Configuration completed manually and revised manually for each new MSN
 - ATA CMWG is working on a standard to enable automatic MIS upload

Actual Configuration

- Built for each new MSN using data from:
 - Airbus SPEC2000 Chapter 15 Delivery Data
 - Panasonic IFE Configuration Data Dump
 - Rolls-Royce Engine Configuration Excel
 - Messier Landing Gear Configuration Pdf
- Complex network of cross-checks between different data sets and against Allowable Configuration
- Each A350 Configuration has ~5400 Serial Numbers

Lessons Learned after nine A350 aircraft

Learning Curve at Airbus

- Our first A350 was MSN 18
- S1000D IPD data was far from complete to start with
- Finnair was a pilot customer with Spec 2000 Ch. 15
- Major configuration changes between MSNs
- Learning Curve at Finnair
 - A350 was the first aircraft type with digital data EIS
 - Continuous development and evolution
 - From coping with missing data to utilizing new data
- Massive amount of repetitive manual work saved
- Finnair A350 data quality is high and consistent, and improves with each new delivery

Thank You!

Jani Kilpi